Asymptotic operator algebras in quantum mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 172363
(http://iopscience.iop.org/0305-4470/17/11/532)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:54

Please note that terms and conditions apply.

Corrigenda

Asymptotic operator algebras in quantum mechanics

Kay-Kong Wan and R G D McLean 1984 J. Phys. A: Math. Gen. 17 825-36
The last line on page 826 should read

$$
\left\|\left(E_{x}\left(b_{r_{k}}\right)-E_{x}\left(b_{r_{k-1}}\right)\right) \psi_{t_{k}}\right\|^{2}>1-1 / k .
$$

The expression in (1) of Definition 3 on page 829 should be

$$
\mathscr{A}_{\Lambda}=\left\{E_{x}(\Lambda) A E_{x}(\Lambda): A \in B(\mathscr{H})\right\} .
$$

The line immediately above Lemma 2 on page 831 should read:
by the lemma and theorem below.
On page 832 the expression at the end of the line labelled (4) in the Proof should be $A \in, \operatorname{not} A \in \Delta$.

On page 834 the expression at the end of the first line in the last paragraph at the bottom should read

$$
G \in, \operatorname{not} G \in \Delta
$$

Observables of asymptotically vanishing correlations, states at infinity and quantum separability
Kay-Kong Wan and R G D McLean 1984 J. Phys. A: Math. Gen. 17 837-46
The first line on page 839 should read
Postulate 1. A free quantum particle in $\mathbb{R}^{\prime \prime}$ has associated with it the C^{*}-algebra....

